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Abstract

The total alkalinity–pH equation, which relates total alkalinity and pH for a given set
of total concentrations of the acid-base systems that contribute to total alkalinity in
a given water sample, is reviewed and its mathematical properties established. We
prove that the equation function is strictly monotone and always has exactly one pos-5

itive root. Different commonly used approximations are discussed and compared. An
original method to derive appropriate initial values for the iterative solution of the cu-
bic polynomial equation based upon carbonate-borate-alkalinity is presented. We then
review different methods that have been used to solve the total alkalinity–pH equa-
tion, with a main focus on biogeochemical models. The shortcomings and limitations10

of these methods are made out and discussed. We then present two variants of a new,
robust and universally convergent algorithm to solve the total alkalinity–pH equation.
This algorithm does not require any a priori knowledge of the solution. The iterative
procedure is shown to converge from any starting value to the physical solution. The
extra computational cost for the convergence security is only 10–15 % compared to the15

fastest algorithm in our test series.

1 Introduction

Biogeochemical models have become indispensable tools to improve our understand-
ing of the cycling of the elements in the Earth system. A central and critical component
of almost all biogeochemical models is the pH calculation routine. In ocean carbon cy-20

cle models, the air-sea exchange of CO2 is directly linked to the surface ocean [CO2];
the preservation of biogenic carbonates in the surface sediments at the sea floor is
closely linked to the deep-sea [CO2−

3 ] (Broecker and Peng, 1982). The fractions of

CO2, HCO−
3 and CO2−

3 in the total dissolved inorganic carbon (i.e. the speciation of the
carbonate system) are controlled by pH. Hence, pH changes in seawater may directly25

influence air-sea exchange of CO2 or the preservation of carbonates in the deep-sea.
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Conversely, the dissociation of acids, such as carbonic acid, also controls pH: when the
ocean takes up or releases CO2 (e.g. as a result of a rise or a decline of the abundance
of CO2 in the atmosphere), its pH changes. The currently ongoing ocean acidification
due to the massive release of CO2 into the atmosphere by human activity is but one
example of such an induced pH change.5

The nitrogen cycle is another important biogeochemical cycle where pH plays an
important role. The speciation of dissolved ammonium is – as that of any acid-base
system – dependent on pH, NH3 being more abundant than NH−

4 at high pH, and less
abundant at low pH. At pH>9, the concentration of NH3 in seawater may reach toxic
levels.10

The realistic modelling of biologically mediated fluxes (e.g. marine primary or export
production) requires the co-limitation or even inhibition by different chemical compo-
nents to be taken into account. The nitrogen and carbon cycles, already mentioned
above, strongly interact, both in the ocean and on land. In the ocean, Fe and other
metals act as micronutrients and once again, pH plays an important role as the solubil-15

ity of metals is strongly dependent on pH (Millero et al., 2009). The resulting coupling
of the biogeochemical cycles of different elements makes biogeochemical models be-
come more and more complex and pH calculation more and more difficult.

Biogeochemical models are now increasingly used for settings that are strongly dif-
ferent from present-day. Typical applications include future ocean acidification (e.g.20

Caldeira and Wickett, 2003), the Paleocene-Eocene-Thermal-Maximum (e.g. Ridgwell
and Schmidt, 2010), Snowball Earth (e.g. Le Hir et al., 2009) etc. Some commonly
used pH solvers may possibly become unstable and produce unreliable results. The
convergence properties of currently used solution methods has actually never been
systematically tested.25

The speciation of any acid system, i.e. the determination of the concentrations of
each one of the undissociated and the different dissociated forms of an acid, is an
underdetermined problem if only the total concentration and thermodynamic or stoi-
chiometric constants are known. This underdetermination can be lifted if pH is known.
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Being dependent on temperature and pressure, neither pH nor [H+] are, however, well
suitable for being used in transport equations, and thus in biogeochemical models. In
biogeochemical models, the common way to resolve this underdetermination is to con-
sider another conservative quantity: total alkalinity, also called titration alkalinity. Total
alkalinity, which is also an experimentally measurable quantity, ties all the different acid5

systems present in a water sample together and allows us to solve the speciation prob-
lem. In comparison to pH, it has the advantage of being a conservative quantity: it
is only controlled by its sources and sinks, and it is independent on temperature and
pressure (Zeebe and Wolf-Gladrow, 2001).

In the following section, we provide a comprehensive introduction to the concept10

of alkalinity. In our exploration of the mathematical properties of the equation that re-
lates [H+] to total alkalinity start with a detailed presentation of various approximations
commonly used for present-day seawater. The analysis of the mathematical properties
of these approximations will provide useful hints for the characteristics of the general
case. In Sect. 3 of this paper, we present solution methods for deriving pH from each15

of the various approximations to total alkalinity considered. Complications that might
possibly arise from the various pH scales that are in use in marine chemistry are elu-
cidated in Sect. 4. In Sect. 5, we then show that there are intrinsic bounds that bracket
the root of the total alkalinity-pH equation, and that can be directly derived from the
approximation used to represent total alkalinity. The existence of such bounds makes20

it possible to define a new, universal algorithm to solve the alkalinity–pH equation, that
requires no a priori knowledge of the root. A reference implementation of two variants
of the new algorithm is presented in Sect. 6. The algorithms are tested for their effi-
ciency and robustness and their performance compared with that of the most common
previously published general solution methods.25
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2 Total alkalinity: general definition and approximations

In the following parts of this section, we review a number of aspects of total alkalinity in
natural waters. The main focus will be put onto seawater and on the carbonate system,
but all the presented developments can be applied to any natural water sample, pro-
vided the required thermodynamic constants are known. We briefly recall the different5

approximations commonly used for calculating pH and the speciation of acid systems.
We will then establish a few basic properties of the expressions that relate the various
types of alkalinity to total concentrations and pH. Although simple, these properties
do not seem to have been previously explored in detail, nor exploited for designing
methods of solution of the alkalinity-pH equation.10

Although we primarily focus on modelling in the following developments, the calcula-
tion procedures are obviously also applicable in experimental set-ups.

2.1 Total alkalinity: general definition

Total alkalinity, also called titration alkalinity, denoted here AlkT, reflects the excess of
chemical bases of the solution relative to an arbitrary specified zero level of protons, or15

equivalence point. Ideally, AlkT represents the amount of bases contained in a sample
of seawater that will accept a proton when the sample is titrated with a strong acid
(e.g. hydrochloric acid) to the carbonic acid endpoint. That endpoint is located at the
pH below which H+ ions get more abundant in solution than HCO−

3 ions; its value is
close to 4.5. H+ added to water at this pH by adding strong acid will remain as such20

in solution. Please notice that, for the sake of a simpler notation, we follow here the
common usage of denoting protons in solution by H+, although free H+ ions sensu
stricto do only exist in insignificantly small amounts in aqueous solutions. Each proton
is rather bound to a water molecule to form an H3O+ ion, and each of these H3O+ in
turn is furthermore generally hydrogen bonded to three other H2O molecules to form25

an H9O+
4 ion (Dickson, 1984).
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Rigorously speaking, AlkT is defined as the number of moles of H+ ions equivalent
to the excess of “proton acceptors”, i.e. bases formed from acids characterized by
a pKA ≥ 4.5 in a solution of zero ionic strength at 25 ◦C, over “proton donors”, i.e. acids
with pKA < 4.5 under the same conditions, per kilogram of sample (Dickson, 1981).

With emphasis on the most important contributors, a rather complete expression for5

AlkT in a seawater sample is

AlkT = [HCO−
3 ]+2× [CO2−

3 ]+ [B(OH)−4 ]+ [OH−]+ [HPO2−
4 ]+2× [PO3−

4 ]+ [H3SiO−
4 ]

+ [NH3]+ [HS−]+2× [S2−]+ . . .−[H+]f−[HSO−
4 ]−[HF]−[H3PO4]−. . . (1)

where the ellipses refer to other potential proton donors and acceptors generally10

present at negligible concentrations only. All of the concentrations are total concen-
trations (which include free, hydrated and complexed forms of the individual species),
except for [H+]f, which only includes the free and hydrated forms. There are alternative
definitions that can be found in the literature, which lead to similar, although not nec-
essarily exactly the same, expressions. However, the above definition is the one that15

reflects the titration procedure used to measure alkalinity the most accurately. We will
therefore base the following developments upon it.

In other natural water samples (lake, river, or brines) the constituent list in Eq. (1)
needs to be adapted: some constituents may be neglected and bases of other acid
systems have to be included (e.g. bases derived from organic acids, from dissolved20

metals, etc.). While total alkalinity in seawater samples typically ranges between about
2 and 2.6 meqkg−1, acid mine drainage samples may even present negative alkalinity,
representing the fact that a strong base instead of a strong acid must be added to
reach the equivalence pH point of 4.5. Interested readers may refer, e.g. to Kirby and
Cravotta III (2005) and references therein for such – from a marine chemist’s point of25

view – exotic samples.
Total alkalinity as defined above is a conservative quantity with respect to mixing,

changes in temperature and pressure (Wolf-Gladrow et al., 2007). It is therefore a cor-
nerstone in biogeochemical cycle models which are most conveniently formulated on
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the basis of conservation equations. In such models, definition/Eq. (1) above, or an
adequate variant, is used to solve the inverse problem for [H+]. All of the individual
species concentrations appearing in Eq. (1) can be expressed in terms of the total con-
centrations of the acid systems that they respectively belong to and of [H+]. Given the
evolutions of the total concentrations of all the acid systems considered (dissociated5

and non dissociated forms) and of AlkT – all of which can be derived from appropri-
ate conservation equations – expression (1) is interpreted as an equation for [H+] or,
equivalently, pH. We will therefore call that equation the total alkalinity-pH equation.

2.2 Common approximations for total alkalinity in seawater

Here we first analyse the forward problem for a few specific approximations used for10

seawater: for given total concentrations of dissolved inorganic carbon, total borate, etc.,
we analyse how the expressions for the different types of alkalinity change as a function
of [H+]. This simple analysis will already provide valuable insight into the overall math-
ematical properties of the total alkalinity–pH equation and its subcomponents, that we
can exploit later for the most general case.15

2.2.1 Carbonate alkalinity

The contribution of the carbonic acid system (or carbonate system) to total alkalinity is
called carbonate alkalinity and we denote it by AlkC:

AlkC = [HCO−
3 ]+2[CO2−

3 ].

Upon substitution of the concentrations of the species by their fractional expressions20

as a function of [H+],

[HCO−
3 ]=CT

K1[H+]

[H+]2 +K1[H+]+K1K2

and [CO2−
3 ]=CT

K1K2

[H+]2 +K1[H+]+K1K2
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where CT is the total concentration of dissolved inorganic carbon (CT = [CO2]+
[HCO−

3 ]+ [CO2−
3 ]), K1 and K2 are the first and second dissociation constant for car-

bonic acid, we get

AlkC = CT
K1[H+]+2K1K2

[H+]2 +K1[H+]+K1K2

.

For constant CT, the right-hand side is a strictly decreasing function of [H+]: its deriva-5

tive with respect to [H+] is strictly negative for positive [H+]. As a consequence,
0 < AlkC < 2CT if CT 6= 0. Both bounds are strict (i.e. they cannot be reached) and rep-
resent the limits of AlkC(CT; [H+]) for [H+] → +∞ (lower bound) and [H+] → 0 (upper
bound), for CT fixed.

2.2.2 Carbonate and borate alkalinity10

The second most important component of natural present-day seawater alkalinity is
borate alkalinity, AlkB. Together with the carbonate alkalinity we have

AlkCB = AlkC +AlkB = [HCO−
3 ]+2[CO2−

3 ]+ [B(OH)−4 ].

Upon substitution of the individual species concentrations by their fractional expres-
sions as a function of [H+], we get15

AlkCB = CT
K1[H+]+2K1K2

[H+]2 +K1[H+]+K1K2

+BT
KB

[H+]+KB
,

where BT is the total concentration of dissolved borates. For constant BT, AlkB is again
a strictly decreasing function with [H+], similarly to AlkC. Hence, for constant CT and
BT, AlkCB is a strictly decreasing function with [H+] and, as a consequence, 0 < AlkCB <
2CT +BT as long as CT +BT 6= 0.20
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2.2.3 Carbonate, borate and water self-ionization alkalinity

In a third stage, we may consider the alkalinity that arises from the dissociation of the
solvent water itself (by self-ionization) in addition to carbonate and borate alkalinity and
get the next important approximation for natural present-day seawater, called practical
alkalinity by Zeebe and Wolf-Gladrow (2001):5

AlkCBW = AlkCB + [OH−]−[H−]=[HCO−
3 ]+2[CO2−

3 ]+ [B(OH)−4 ]+ [OH−]−[H+].

Upon substitution by the respective speciation relationships, we get

AlkCBW = CT
K1[H+]+2K1K2

[H+]2 +K1[H+]+K1K2

+BT
KB

[H+]+KB
+

KW

[H+]
− [H+] (2)

At this stage, we do not want to insist on subtleties related to pH scales. Normally, the
last term [H+] in the two previous equations should actually read [H+]f. We will address10

the difference between [H+] and [H+]f in Sect. 4 below.
Since AlkCB is decreasing with [H+], for constant CT and BT, the same holds for

AlkCBW, because KW/[H+]−[H+] is again decreasing with [H+]. However, unlike AlkCB,
AlkCBW is unbounded and it can take arbitrarily low values (for [H+] �) and arbitrarily
great values (for [H+] �).15

2.2.4 Contribution of a generic acid system to total alkalinity

In common seawater, AlkCBW is entirely sufficient even for applications that require
high accuracy. However, in some cases other systems than the carbonate and borate
systems need to be considered. This is especially the case in suboxic and anoxic
waters, such as semi-closed fjords (e.g. Framvaren Fjord in Norway studied by Yao20

and Millero, 1995) or at a larger scale, the Black Sea (e.g. Dyrssen, 1999), where, e.g.
the contribution from sulphides cannot be neglected.

In order to generalize our analysis of the total alkalinity–pH equation, let us consider
a generic acid, denoted by HnA, that may potentially lead to n successive dissociation
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reactions, characterised by stoichiometric dissociation constants K1,K2, . . .,Kn, respec-
tively:

HnA 
 H+ +Hn−1A− K1 =
[H+][Hn−1A−]

[HnA]

Hn−1A− 
 H+ +Hn−2A2− K2 =
[H+][Hn−2A2−]

[Hn−1A−]

...
...

HA(n−1)− 
 H+ +An− Kn =
[H+][An−]

[HA(n−1)−]

For simplicity, we omit the “∗” superscript commonly used elsewhere to differentiate
stoichiometric from thermodynamic dissociation constants (i.e. elsewhere stoichiomet-5

ric constants generally write K ∗
i instead of Ki ). Throughout this paper, the constants

used will relate concentrations and not activities. As such, they include the effect of
activity coefficients that differ from unity. The values of such constants not only depend
on temperature and pressure but also on the ionic strength of the solution. Every-
thing developed here furthermore applies to all kinds of acids, be they of Arrhenius,10

Brønsted-Lowry, Lewis or any other type, even if the adopted notation could possibly
suggest that our developments only apply to Arrhenius-type acids.

If we denote the total concentration of dissolved acid HnA by [ΣA]=[HnA]+. . .+ [An−],
the fractions of undissociated acid and of the various dissociated forms Hn−1A−,
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Hn−2A2−, . . . , An− are

[HnA]

[ΣA]
=

[H+]n

[H+]n +K1[H+]n−1 +K1K2[H+]n−2 + . . .+K1K2 · · ·Kn

=
[H+]n

[H+]n +
n∑

j=1
[H+]n−j

j∏
i=1

Ki

[Hn−1A−]

[ΣA]
=

K1[H+]n−1

[H+]n +
n∑

j=1
[H+]n−j

j∏
i=1

Ki

...5

[Hn−jA
j−]

[ΣA]
=

(
j∏

i=1
Ki )[H

+]n−j

[H+]n +
n∑

k=1
[H+]n−k

k∏
i=1

Ki

...

[An−]

[ΣA]
=

n∏
i=1

Ki

[H+]n +
n∑

j=1
[H+]n−j

j∏
i=1

Ki

.

The joint contribution of all the different dissociated and non dissociated forms of HnA
to alkalinity, proton donors and proton acceptors alike, is then equal to10

AlkA =
n∑

j=0

(j −m)[Hn−jA
j−],
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where m is an integer constant, which is dependant on the so-called zero proton level
of the system under consideration:

– m is such that pKm < 4.5 < pKm+1 if pK1 < 4.5 and pKn > 4.5

– m = 0 if pK1 > 4.5

– m = n if pKn < 4.55

Since pKm < 4.5, all of the Hn−jA
j− in the HnA−. . .−An− system for j = 0, . . .,m−1

are proton donors: the last one (j =m−1) has a strength of 1 eqmol−1, the second
last one (j =m−2) of 2 eqmol−1, etc. Since pKm+1 > 4.5, the dissociation products
Hn−jA

j− for j =m+1, . . .,n) are proton acceptors, the first one (j =m+1) with a strength

of 1 eqmol−1, the second one (j =m+2) with a strength of 2 eqmol−1, etc. For the10

carbonic acid system, e.g. n = 2 and m = 0; for the boric acid system, n = 1 and m = 0;
for the phosphoric acid system, n = 3 and m = 1.

From the previous expressions for the species fractions, we then find that

AlkA([H+])=[ΣA]

n∑
j=0

(j−m)Πj [H
+]n−j

n∑
j=0

Πj [H+]n−j
= [ΣA]


n∑

j=0
jΠj [H

+]n−j

n∑
j=0

Πj [H+]n−j
−m

 (3)

where we have defined15

Πj =
j∏

i=1

Ki , j = 1, . . .,n and Π0 = 1 (4)

to simplify the notation.
Similar to the carbonate and borate systems above, AlkA is strictly decreasing with

[H+], for [ΣA] fixed. A mathematically rigorous demonstration of this behaviour for the
general case is provided in Appendix A.20
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There are two corollaries of this monotonic behaviour worth emphasizing:

1. For any acid system HnA-. . . -An−, AlkA is bounded: it has a supremum which is
equal to (n−m)[ΣA] (i.e. the limit for [H+] → 0, not actually reachable though), and
an infimum, which is equal to −m[ΣA] (i.e. its limit for [H+] → +∞, also not actually
reachable); both of these could, theoretically, be negative if m is sufficiently large.5

2. For a water sample that contains a set of acids Hni A[i ], (i = 1, . . .) of respective
known total concentrations [ΣA[i ]] and with zero proton levels respectively charac-
terised by mi , the total alkalinity–pH equation∑
i

AlkA[i ]
([H+])+

Kw

[H+]
−[H+]f−AlkT=0 (5)

has exactly one positive root [H+], for any given value of AlkT: the sum of the10

respective alkalinity contributions over the set {Hni A[i ]|i=1, . . .} of all the acid sys-
tems active in the sample is a strictly decreasing function of [H+]; the contribution
from the dissociation of water is also strictly decreasing with [H+], and may theo-
retically take any value between +∞ and −∞.

3 Alkalinity-pH equation in biogeochemical models: approximations and15

methods of solution

In this section, we are going to review the most common approximations used in ocean
carbon and biogeochemical cycle models, focusing on how the corresponding equation
is solved.

3.1 Carbonate alkalinity based solutions20

The straight approximation AlkT ' AlkC is often used in textbooks (e.g. Broecker and
Peng, 1982). There are only a few models (e.g. Opdyke and Walker, 1992; Walker and
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Opdyke, 1995) that use it directly for their carbonate chemistry speciation. For numer-
ical modelling purposes, its usage is indeed somewhat problematic. [H+] calculated
from AlkT and CT data, by assuming that AlkC = AlkT are typically 30–40 % too low (i.e.
0.15–0.2 pH units too high) for present-day seawater samples. Furthermore, the sen-
sitivity of the CT-AlkC system to perturbations is stronger than that of the CT-AlkCBW5

system: equilibrium pCO2 changes, e.g. are of the order of 20 % larger (Munhoven,
1997).

The calculation of [H+] from CT-AlkC remains nevertheless important, as more ad-
vanced methods such as those proposed by Bacastow (1981), Peng et al. (1987) or
Follows et al. (2006), where AlkC is iteratively recalculated from more complete approx-10

imations to AlkT (ICAC methods – see below), rely on it.

3.1.1 Fundamental solution

For given AlkC and CT (CT > 0), the equation to solve for [H+] is

RC([H+]) ≡ CT
K1[H+]+2K1K2

[H+]2 +K1[H+]+K1K2

−AlkC=0. (6)

Following our discussion in Sect. 2.2.1, Eq. (6) has a positive root if and only if 0 <15

AlkC < 2CT; if there is a positive root, it is unique.
Equation (6) can be directly solved after conversion to the quadratic equation

PC([H+]) ≡ [H+]2 +a1[H+]+a0=0 (7)

where

a1 = K1

(
1−

CT

AlkC

)
and a0 = K1K2

(
1−

2CT

AlkC

)
20
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For valid AlkC values (i.e. for 0 < AlkC < 2CT), this quadratic equation has two real roots,
a positive and a negative one. The positive root is

[H+]=Q(AlkC,CT) ≡
K1

2

(
CT

AlkC
−1+

√
∆C

)
, (8)

where

∆C =
(

1−
CT

AlkC

)2

+4
K2

K1

(
2CT

AlkC
−1

)
. (9)5

For AlkC values that are out of range Eq. (7) either has two negative or two complex
roots.

3.1.2 Alternative methods

There are other methods to derive [H+] from AlkC and CT. All of them ultimately
seem to rely on the formulae of Park (1969) for deriving the complete speciation of10

the carbonate system directly from AlkC and CT, without explicitly using [H+]. An-
toine and Morel (1995) first calculate [CO2] from CT and AlkC (which involves the
solution of a first parabolic equation), and then derive [H+] from the relationship
[CO2]=AlkC[H+]2/(K1[H+]+2K1K2), which requires the solution of a second parabolic
equation. Ridgwell (2001) first determines the complete speciation of the carbonate15

system, referring for the adopted procedure to Millero and Sohn (1992), who actually
only report the formulae of Park (1969). He then derives two different estimates for
[H+], based upon the definitions of the first and second dissociation constants of car-
bonic acid and finally uses the geometric mean of these two estimates as a solution for
Eq. (6).20

There are no obvious advantages for calling upon these methods instead of the direct
quadratic solution above. Even if carefully implemented, both require a significantly
higher number of operations than the solution outlined above. Those methods offer
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a direct access to carbonate speciation (at least in part). That can, however, also be
calculated at little extra cost from [H+].

3.1.3 Iterative carbonate alkalinity correction methods

In most common natural settings, the difference between AlkC and AlkT, albeit small,
leads to significant errors on [H+], if AlkT is used in place of AlkC and one of the pro-5

cedures above is used to calculate it from CT. To overcome this problem, AlkC can
be estimated from AlkT, and then iteratively corrected until stabilisation occurs. Such
a procedure, which we call here Iterative Carbonate Alkalinity Correction (ICAC) can
a priori be used with arbitrary chemical compositions, provided AlkC represents a sig-
nificant fraction of AlkT. If AlkC makes up only a small fraction of AlkT, the method is10

likely to exhibit unstable behaviour.
In the most straightforward ICAC method, one starts from a trial value H0 for [H+],

a first estimate AlkC,0 is obtained by subtracting the concentrations of all non-carbonate
components from AlkT. That AlkC,0 is then used to calculate a new (improved) estimate
H1 for [H+] from Eqs. (8) and (9) or one of the alternative methods. H1 is then used15

to calculate a new estimate AlkC,1 from AlkT as above and the procedure is iterated
until some predefined convergence criterion is fulfilled. This procedure is a classical
fixed-point iteration:

Hn+1 =Q(AlkC(AlkT,Hn),CT) (10)

In this recurrence, AlkC(AlkT,Hn) is the estimate of AlkC obtained from AlkT by subtract-20

ing all the non-carbonate components estimated by using Hn. Pure fixed point iterative
schemes may be prone to convergence problems (slow convergence or no conver-
gence at all). If the procedure is convergent, the rate of convergence is linear.

This plain fixed-point iteration ICAC method was recently made popular again by
Follows et al. (2006). These authors argue that in carbon cycle model simulation ex-25

periments, where there is little change in pH from one time step to the next, a single
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iteration may already provide a sufficiently accurate estimate of [H+] to derive accept-
able pCO2 estimates, for any chosen approximation of total alkalinity. Follows et al.
(2006) suggest, if necessary, to repeat the fixed-point iteration until a sufficiently accu-
rate estimate is found.

There are a number of models that rely on the ICAC approach for their pH determi-5

nation. Peng et al. (1987) consider AlkCBW plus the contributions from silicic and phos-
phoric acid systems in their representation of total alkalinity.1 They use an initial value
of 10−8 and stop their iterations once |(∆H)/H | < 0.005%. They report that less than
ten iterations are generally sufficient. Antoine and Morel (1995) adopt AlkCBW as an ap-
proximation to AlkT. At each step, they derive [H+] from CT and AlkC by using their spe-10

cial procedure described above. They iterate until two successive AlkC estimates differ
by less than 10−8 (no units given). Ridgwell (2001) adopts AlkCB+[OH−]+1.1[PO3−

4 ] as
an approximation to total alkalinity. He calculates [H+] at each step from CT and AlkC by
using his own procedure described above. GENIE (Ridgwell et al., 2007) initially used
the same procedure as Ridgwell (2001); in more recent versions of GENIE, a complete15

representation of the phosphoric acid component is used (Ridgwell, personal commu-
nication, 2012). Arndt et al. (2011) use AlkCBW+[HS−] as an approximation to total alka-
linity in GEOCLIM reloaded. They continue to iterate until |AlkCBW+ [HS−]−AlkT| < 10−6

(no units given). The method is further used in LOVECLIM (Anne Mouchet, personal
communication, 2012) with AlkCBW as an approximation for total alkalinity (Goosse20

et al., 2010) and most probably in still some others, that do, unfortunately not provide
details about the calculation procedures adopted.

Bacastow (1981) proposed a variant to improve the rate of convergence of fixed-
point iterations. That variant only uses the recurrence described above for the first two
iterates. From the third iteration on, Bacastow (1981) switches to a secant method to25

1Peng et al. (1987) adopt, however, a slightly different definition of total alkalinity by system-
atically weighting species by their respective charge. This leads to differences with the phos-
phoric acid system, e.g.: the definition of Peng et al. (1987) is equivalent to adopting m = 0 for
the phosphoric acid system.
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solve the fixed-point equation H −Q(AlkC(AlkT,H)) = 0.2 Fixed-point iterations are thus
only used to provide starting values for the solution of the fixed-point equation by the
secant method. The rate of convergence of the method is strongly increased by this ap-
proach (and the domain of convergence slightly enlarged – see numerical experiments
below). However, for some CT-AlkT combinations the underlying fixed-point equation5

may still give rise to convergence problems, even with the secant method. However
as will be shown below, the method of Bacastow (1981) is strongly preferable over the
pure fixed-point scheme.

The Hadley Centre Ocean Carbon Cycle (HadOCC) model (Palmer and Totterdell,
2001) uses Bacastow’s method for its carbonate speciation calculation, with the AlkCBW10

approximation.

3.2 Carbonate and borate alkalinity based solution

Only a few models appear to use pH calculation routines based upon AlkCB. MBM-
MEDUSA (Munhoven and François, 1996; Munhoven, 1997, 2007) is one of them, the
model of Marchal et al. (1998) is another one.15

3.2.1 Basic formulation and solution methods

The equation to solve for [H+] is, for given AlkCB, CT and BT,

RCB([H+]) ≡ CT
K1[H+]+2K1K2

[H+]2 +K1[H+]+K1K2

+BT
KB

[H+]+KB
−AlkCB=0. (11)

This equation may be converted into the polynomial equation

PCB([H+]) ≡ [H+]3 +c2[H+]2 +c1[H+]+c0 = 0 (12)20

2Bacastow (1981) actually solves the alkalinity equation for the scaled inverse of [H+]. We
provide codes for the two approaches, although we only base our discussions on the version
with secant iterations on [H+].
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with

c2 = KB(1−
BT

AlkCB
)+K1(1−

CT

AlkCB
)

c1 = K1
(
KB(1−

BT

AlkCB
−

CT

AlkCB
)+K2(1−2

CT

AlkCB
))

c0 = K1K2KB
(
1−

2CT +BT

AlkCB

)
.

Following our discussion in Sect. 2.2.2, Eq. (11) has a positive root if and only if 0 <5

AlkCB < 2CT +BT; if there is a positive root, it is unique. The same holds for the cubic
Eq. (12).

The cubic equation could possibly be solved with closed formulae, such as Cardano’s
formulae (which may, however, suffer from precision problems, require numerically ex-
pensive cubic root evaluations or possibly complex arithmetic) or Viète’s trigonomet-10

ric formulae (which require a combination of an arc-cosine, a cosine and a square
root). When adopted, the cubic Eq. (12) is therefore generally solved numerically, with
a Newton–Raphson scheme. In this case, determining an adequate starting value is
the main problem to address in order to design a robust and fast solution algorithm.

3.2.2 Efficient starting value for iterative methods15

An excellent initial value for the Newton–Raphson scheme can be found by adopting
the following procedure:

1. locate the local minimum closest to the largest root – if it exists, it is the extremum;

2. develop PCB([H+]) to second order around that minimum;

3. determine the greatest root of the resulting parabola and use it as a starting value.20
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That local minimum, if it exists (i.e. if c2
2 −3c1 > 0), is located at

Hmin =
−c2 +

√
c2

2 −3c1

3
=

−c1

c2 +
√
c2

2 −3c1

.

The Taylor expansion to second order in Hmin, thus intersects the H-axis on the right-
hand side of Hmin at

H0 = Hmin +

√√√√√−
PCB(Hmin)√
c2

2 −3c1

,5

provided PCB(Hmin) < 0. By completing the Taylor expansion to third order, it is straight-
forward to show that H0 is greater than the root.

The so-defined H0 provides an excellent starting value not only for solving the cubic
polynomial equation, but also for other iterative methods.

3.3 Carbonate, borate and water self-ionization alkalinity10

With AlkCBW, CT and BT given, the equation to solve is

RCBW([H+])

≡ CT
K1[H+]+2K1K2

[H+]2 +K1[H+]+K1K2

+BT
KB

[H+]+KB
+

KW

[H+]
− [H+]−AlkCBW=0. (13)

One may either solve this equation in that rational fraction form with some iterative root-15

finding method or by one of the ICAC methods described above, or one may transform
it into a quintic polynomial equation:

PCBW([H+]) ≡ [H+]5 +q4[H+]4 +q3[H+]3 +q2[H+]2 +q1[H+]+q0=0 (14)
2106
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with

q4 = AlkCBW +K1 +KB

q3 = (AlkCBW −CT +KB)K1 + (AlkCBW −BT)KB +K1K2 −KW

q2 = (AlkCBW −2CT +KB)K1K2 + (AlkCBW −CT −BT)K1KB −K1KW −KBKW

q1 = (AlkCBW −2CT −BT)K1K2KB −K1K2KW −K1KBKW5

q0 = −K1K2KBKW.

The polynomial equation can then be solved with appropriate standard root finding
techniques, selecting the positive root found. Equations (14) and (13) have the same
unique positive root: when Eq. (13) is multiplied by the product of all the denomina-10

tors of the fractions included – a product that does not change sign for [H+] > 0 – to
transform it into Eq. (14) no new sign changes can be obtained for [H+] > 0.

AlkCBW is probably the most commonly used approximation for total alkalinity in
global carbon cycle models of all kinds of complexity. It was already adopted by Ba-
castow and Keeling (1973), who based their pH calculation on the quintic Eq. (14), that15

they solve by Newton’s method, with a stopping criterion |(∆H)/H | < 10−10. Hoffert et al.
(1979) adopt the same procedure (for which they refer to Keeling (1973) and Bacas-
tow and Keeling (1973)), but with a less stringent stopping criterion |(∆H)/H | < 10−6.
Keeling (1973) uses a variant, where CT is replaced by an equivalent term in pCO2.

As already mentioned above, LOVECLIM (Goosse et al., 2010) and HadOCC20

(Palmer and Totterdell, 2001) use AlkCBW as an approximation for total alkalinity. AlkCBW
is also used in the PISCES model (Aumont and Bopp, 2006), following a simplified ver-
sion of the OCMIP standard protocol (see next section). PISCES is included in NEMO
and in some versions of the Bern3D model (Gangstø et al., 2011). Other models that
base their pH calculation on AlkCBW include the Hamburg Model of the Ocean Carbon25

Cycle (HaMOCC) family (Maier-Reimer and Hasselmann, 1987; Heinze et al., 1991;
Maier-Reimer, 1993; Maier-Reimer et al., 2005), the models of Bolin et al. (1983) and
Shaffer et al. (2008). No details regarding the adopted solution algorithms are provided,
though.
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3.4 More complete approximations: rational function based solvers

When additional components in total alkalinity need to be considered besides carbon-
ate, borate and water self-ionization, converting the resulting rational function equation
to an equivalent polynomial form becomes more and more tedious and the rational
function form becomes the preferred basis for finding the solution. ICAC methods are5

the only ones that we have encountered so far that could possibly be used to address
this problem. However, they bear some potential pitfalls: despite having a solution, the
underlying fixed-point equation may be difficult to solve numerically; intermediate esti-
mates of AlkC may go out of bounds (remember that AlkC may only take values between
0 and 2CT). ICAC methods can therefore not be guaranteed to find the solution.10

The only commonly used carbonate chemistry routine that directly solves the ra-
tional function form of the equation is that from the Ocean Carbon Cycle Model
Intercomparison Project (OCMIP). For the purpose of that project, Orr et al.
(2000) prepared standard carbonate speciation routines. Total alkalinity is ap-
proximated by AlkT ' [HCO−

3 ]+2× [CO2−
3 ]+ [B(OH)−4 ]+ [OH−]+ [HPO2−

4 ]+2× [PO3−
4 ]+15

[H3SiO−
4 ]−[H+]f−[HSO−

4 ]−[HF]−[H3PO4]. The different species concentrations were, as
above, expressed as a function of the total concentrations of their respective acid sys-
tems and of [H+]. The resulting equation was then solved for pH by a hybrid Newton-
bisection method, based upon the rtsafe solver from Press et al. (1989). All of the
models that participated in OCMIP had to use the provided routines for a set of well20

defined experiments. A number of models still routinely use these OCMIP routines
for their pH calculations. These include some versions of the Bern3D model (Müller
et al., 2008) and the NCAR global coupled carbon cycle-climate model CSM1.4-carbon
(Doney et al., 2006). As mentioned above, PISCES (Aumont and Bopp, 2006) includes
a version of the OCMIP solver trimmed down to AlkCBW only. Other models still offer25

the OCMIP solvers as an option.
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3.5 Other approaches

Luff et al. (2001) have provided a suite of pH calculation routines mainly meant to be
used in reactive transport models, but suitable for general speciation calculations as
well. The methods proposed by Luff et al. (2001) solve the complete system of equa-
tions that control the chemical equilibria between the individual species considered5

in the total alkalinity approximation. These are required for grid-based reactive trans-
port models where different species are diffusing at different diffusivities. For common
applications in biogeochemical carbon cycle models, this approach is nevertheless un-
necessarily complex.

There are still some other fine pH solvers, such as CO2SYS of Lewis and Wal-10

lace (1998) and derivatives (spreadsheet versions, MATLAB versions, etc. – see
http://cdiac.ornl.gov/oceans/co2rprt.html for more information), the MATLAB routines
from Zeebe and Wolf-Gladrow (2001) or the SEACARB package for R (Lavigne and
Gattuso, 2012). These are, however, generally not suitable for inclusion in global bio-
geochemical models, as they were developed with special programming environments15

in mind. Their focus is more on data processing. As their names already suggest, they
are mainly aimed at carbonate speciation calculations. They also often offer the pos-
sibility to chose any two among pH, [CO2] (or pCO2), [HCO−

3 ], [CO2−
2 ], CT, or AlkT to

calculate all the others.

4 pH-scale considerations20

As shortly mentioned above, there are a few subtleties related to pH scales that still
need to be clarified. In Eq. (18) above, [H+] may be expressed on any chosen pH scale
(free, total, seawater) as long as all of the stoichiometric constants KA[i ]1

, . . .,KA[i ]ni for

all of the acid systems are expressed on this same pH scale. The same holds for [H+]f,
the free concentration of H+, which must also be expressed on (or converted to) this25

same scale. The concentrations of H+ on the total and on the sea-water scale are, by

2109

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/2087/2013/gmdd-6-2087-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/2087/2013/gmdd-6-2087-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://cdiac.ornl.gov/oceans/co2rprt.html


GMDD
6, 2087–2136, 2013

Solving the
alkalinity–pH

equation

G. Munhoven

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

definition, respectively proportional to the concentration on the free scale (Hansson,
1973; Dickson and Riley, 1979):

[H+]T=[H+]f(1+ST/KHSO4
) (15)

[H+]SWS=[H+]f(1+ST/KHSO4
+ FT/KHF) (16)

5

where ST and FT are, respectively, the total sulphate and fluoride concentrations in
solution, while KHSO4

and KHF are the dissociation constants of HSO−
4 and of HF, re-

spectively, here necessarily expressed on the free pH scale. Accordingly, [H+]f can be
expressed as a simple function of the adequate [H+] in Eq. (18):

[H+]f=
[H+]
s

(17)10

where [H+]=10−pH, for a chosen pH scale, s is the corresponding scale conversion
factor derived from either Eq. (15) or (16). Notice that s ≥ 1 and remind that s is inde-
pendent of [H+].

Hansson’s (1973) original definitions of [H+]T (and of [H+]SWS for seawater containing
fluoride) were based upon the total analytical concentration of the hydrogen ion in15

solution:

[H+]SWS(Hansson)=[H+]f + [HSO−
4 ]+ [HF].

Differences are negligible in common present-day seawater (Munhoven, 1997). How-
ever, since our aim here is to set up a generally valid algorithm, we are not adopting the
approximation [H+]SWS=[H+]SWS(Hansson) a priori. Instead, we consider that the effects20

of HSO−
4 and of HF on total alkalinity are taken into account together with the compo-

nents of all the other acid systems in the sample, with KHSO4
and KHF being expressed

on the same pH scale as the constants for those components.
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5 Development of a universal and robust algorithm

Our ultimate goal here is to develop a universal algorithm to solve the equation

RT([H+]) ≡ AlknW([H+])+
KW

[H+]
− [H+]

s
−AlkT = 0, (18)

where

AlknW([H+]) =
∑
i

AlkA[i ]
([H+])5

collects the contributions from all the acid systems to total alkalinity, system by system,
proton donors and acceptors combined for each one – except for the contribution that
results from the self-ionization of water which we keep explicit in Eq. (18) – and where
AlkT and all the total concentrations [ΣA[i ]] are given.

We will use a hybrid method that combines the speed of convergence of super-linear10

and higher-order methods (such as the secant or the Newton–Raphson methods) with
the global convergence security of the bisection or the regula falsi method. A similar
method is used by the OCMIP carbonate speciation routine. Such methods are stan-
dard in root-finding for non-linear equations (e.g. Dowell and Jarrett, 1971; Anderson
and Björk, 1973; Bus and Dekker, 1975). They are particularly suitable for our problem15

with its advantageous mathematical characteristics, the more since that problem also
has intrinsic a priori root bracketing, as we will show in the next section. Because of the
strict monotonicity of the rational function it is sufficient to make sure that iterates re-
main within bounds. As long as iterates remain within bounds, they will unconditionally
improve either one of the two bounds, thus allowing to tighten the bracketing interval20

at each step. We can therefore use a high-order numerical root-finding method, such
as Newton–Raphson or the secant method as the main iterative scheme. In case the
main scheme yields an out-of-bounds iterate at some step, that iterate is rejected and
a bisection iterate is used instead. Similarly, if an iteration with the main scheme does
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not make the absolute value of the equation decrease faster than expected for a bisec-
tion step (i.e. by a factor of two) it is replaced by a bisection step. This helps to prevent
cyclic iterations.

A bisection step may temporarily slow down the rate of convergence, but it will se-
cure convergence and again unconditionally improve the bracketing. A regula falsi step5

could be used instead of bisection; bisection has proven to be more economic though.

5.1 Intrinsic bracketing bounds for the root

Our first aim is now to determine Hinf > 0 such that RT(Hinf) > 0 and Hsup > 0 such that
RT(Hsup) < 0. We have previously established that AlknW([H+]) is a strictly decreasing
rational function for [H+] > 0 and that it has the infimum AlknWinf = −

∑
i mi [ΣA[i ]]. It is10

therefore sufficient to have Hinf such that

KW

Hinf
−
Hinf

s
= AlkT −AlknWinf

as in this case RT(Hinf) = AlknW(Hinf)−AlknWinf > 0. Equivalently, we require that H2
inf +

s(AlkT −AlknWinf)Hinf − sKW = 0, and Hinf > 0. This problem has the unique solution

Hinf =
−s(AlkT −AlknWinf)+

√
∆inf

2
(19)15

where ∆inf = s2(AlkT −AlknWinf)
2 +4sKW > 0 is the discriminant of the quadratic.

Similarly, because AlknW([H+]) has the supremum AlknWsup =
∑

i (ni −mi )[ΣA[i ]], it is
sufficient to chose Hsup such that

KW

Hsup
−
Hsup

s
= AlkT −AlknWsup
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which would lead to RT(Hsup) = AlknW(Hsup)−AlknWsup < 0 as requested. Equivalently,

we require that H2
sup +s(AlkT −AlknWsup)Hsup −sKW = 0 and Hsup > 0. We finally obtain

Hsup =
−s(AlkT −AlknWsup)+

√
∆sup

2
, (20)

where ∆sup = s2(AlkT −AlknWsup)2 +4sKW > 0.
Hinf and Hsup define a universal bracketing interval for the root of Eq. (18). They only5

require information that can be directly derived from the nature of the acid systems
considered for AlkT. They can theoretically be used with any numerical scheme to keep
iterations bracketed right from the start of the scheme, without any need for manually
prescribing them.

5.2 Outline of the algorithm10

The proposed algorithm is formally set up in the pH-AlkT space. There are several
advantages for rooting the algorithm in the pH-AlkT space: (1) the equation’s overall
appearance is closer to linear in the pH-AlkT space than in the more commonly used
[H+]-AlkT space; (2) physically meaningless negative [H+] values cannot be produced
by the iterative scheme; this is not warranted with methods that are rooted in the [H+]-15

AlkT space. There is nevertheless also a potential disadvantage: passing between the
two spaces a priori requires costly power and logarithm evaluations at each step. As
shown below, these operations can, however, be avoided to a large extent by transpos-
ing the actual calculations into the [H+]-AlkT space and carrying them out there.

The algorithm comes in two variants: one based upon the Newton–Raphson and20

bisection methods, and one that is based upon the secant and bisection methods. We
will first describe the Newton–Raphson/bisection variant.

Let R = R(H) denote the rational function chosen to approximate AlkT. Before start-
ing we determine the intrinsic lower and upper bounds Hinf and Hsup, and constrain the
initial value H0 to be within bounds.25
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Then, at each step k +1,k = 0, . . .:

1. Prepare to carry out a Newton–Raphson step where pHk+1=pHk +∆pH, with
∆pH=−R |pHk

/(dR/dpH)|pHk
: (dR/dpH)|pHk

can be calculated from R(Hk) and
dR/dH |Hk

, noticing that (dR/dpH)|pHk
=−(dR/dH)|Hk

×Hk × ln(10).

2. Adapt the bracketing interval: if R |pHk
> 0 then adjust Hinf := Hk , if R |pHk

< 0 then5

adjust Hsup := Hk .

3. Require |R(Hk)| to decrease faster than one would typically expect from bisection
under the same conditions: compare it with min(|R(Hj )|,∀j < k) and if greater than
half that value (bisection halves the bracketing interval at each step and is linearly
convergent), do not complete the Newton–Raphson step, but adopt a bisection10

iterate between the current pHinf and pHsup (updated just before) and return to
stage 1 for the next step.

4. Provisionally set Hk+1 = 10−pHk+1 = Hk×exp(−R(Hk)/(Hk dR/dH |Hk
)) to complete

the Newton–Raphson step.

5. Constrain Hk+1 to remain within the current bracketing interval: if Hk+1 > Hsup or15

Hk+1 < Hinf, reject the Newton–Raphson iterate, replace it by the bisection iterate
as in stage 4 and return to stage 1 for the next step.

6. Stop the iterations if either the maximum permissible number of iterations is ex-
ceeded or if |(Hk+1 −Hk)/Hk | < ε (ε being a pre-set tolerance), else return to
stage 1 for another step.20

At most one exponential has to be evaluated per step (at stage 4). This is, computa-
tionally speaking, the most expensive operation in each step. It can, however, often be
avoided: when |RT(Hk)/(Hk dR/dH |Hk

)| �, then Hk ×exp(−RT(Hk)/(Hk dR/dH)|Hk
)) '

Hk −RT(Hk)/(dR/dH |Hk
) and the iterate can be assimilated to a plain [H+]-AlkT

space Newton–Raphson iterate. Once the argument of the exponential becomes suf-25

ficiently small (a threshold value of 1 in absolute value has proven efficient) we may
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switch to the linear approximation, thereby saving the exponential operation. The
relative error |(Hk+1 −Hk)/Hk | from the stopping criterion can be approximated by
|R(Hk)/(Hk dR/dH |Hk

)|, i.e. we can reuse the argument of the exponential above (no
extra operations required). At any stage, bisection between pHinf and pHsup translates

to calculating Hk+1 as the geometric mean of Hinf and Hsup: Hk+1 =
√
HinfHsup. By con-5

struction, any accepted iterate will thus be strictly between the current Hinf and Hsup,
and because of the strictly decreasing nature of R(H) will always lead to contribute to
improve either the lower or the upper bound.

In a variant of the above we replace the Newton–Raphson scheme by a secant
scheme. However, rooting a secant scheme in the pH-AlkT space while carrying out10

operations in the [H+]-AlkT space will require non-integer power operations at each
step which are even more costly than exponentials. It is therefore preferable to com-
pletely root the calculations in the [H+]-AlkT space with the secant method, despite the
potential trade-offs for the convergence efficiency. Secant iterations have the advan-
tage of requiring only one evaluation of the equation at each iteration; in addition to15

the equation evaluation, Newton–Raphson iterations also require the evaluation of the
derivative of the equation. The cheaper iterations of the secant method possibly out-
weigh its lower order of convergence, which is '1.62, compared to 2 for the Newton–
Raphson method.

5.3 Discussion: comparison with the OCMIP solver20

A similar technique was also used in the drtsafe routine in the OCMIP suite (Orr
et al., 2000), which is fundamentally the rtsafe routine of Press et al. (1989) with
some essential error trapping removed. That routine also combines the global con-
vergence properties of the bisection with the speed of convergence of the Newton–
Raphson method.25

The algorithm presented here differs from that used in drtsafe in several significant
ways. (1) drtsafe iterations are rooted in the [H+]-AlkT space. (2) drtsafe requires
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brackets to be explicitly provided at the subroutine call. In case these are inappropriate
(e.g. no sign change of the equation function over the defined bracketing interval),
it would simply iterate to the maximum number of iterations allowed because of the
absence of validity checks and return some meaningless result (in general one of the
two bounds provided). (3) drtsafe always starts its iterations from the midpoint of5

the provided bracketing interval. It is thus critically dependent on a valid interval (no
validity checks performed though) and, because of the rooting in the [H+]-AlkT space,
on a tight bracketing interval for efficiency. The algorithms proposed here only use the
bracketing values to secure convergence in case Newton–Raphson iterates are not
decreasing fast enough or would go out of bounds and they use an independent initial10

value. Because we root our iterations in the pH-AlkT space, even bisection steps may
accommodate [H+] changes over several orders of magnitude during initial steps in
case a far off starting value is used.

6 Sample implementation of the new algorithms in Fortran 90

A sample implementation of the algorithms realized in standard Fortran 90 is provided15

in the Supplement to this paper. Together with the drivers that were used to carry out
the experiments described below they make up the SOLVEr Suite for Alkalinity-PH
Equations (SOLVESAPHE). Parts of the code contain C-preprocessor directives for
enabling or disabling specific parts (debugging messages, optional code parts, . . . ),
and to select among the cases treated below. After pre-processing, the source files are20

strictly standard conforming Fortran 90. The codes are made available under the GNU
Lesser Public Licence, version 3.

A complete user manual that covers the technical details of SOLVESAPHE is in-
cluded in the archive provided in the Supplement. Here we only give a short overview
of the two central modules.25
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6.1 Summary description

The module mod chemconst provides parametric expressions for the stoichiometric
constants of the acid systems taken into account (carbonates, borates, hydrogen sul-
phate, sulphides, phosphates, . . . ). The module also hosts the Πj values (Eq. 4) for the
various acid systems.5

The module mod phsolvers provides six different solvers:

1. the function solve at general : the new algorithm described above;

2. the function solve at icacfp : a fixed-point only ICAC method;

3. the function solve at bacastow : Bacastow’s method, an ICAC method with se-
cant iterations (with secant iterations either on [H+] or on its scaled inverse);10

4. the function solve at general sec : the variant of solve at general that
uses secant instead of Newton–Raphson iterations;

5. the function solve at ocmip : a re-implementation of the OCMIP solver with
Newton–Raphson/bisection iterations, completed with a bare minimum of error
trapping and fitted with the optional initialisation scheme common to all of the15

solvers (the latter was only adapted to use an interval of ±0.5pH unit interval
around an optional initial value to emulate the recommended OCMIP setup after
startup);

6. the function solve at fast : a simplified version of solve at general without
the bracketing control (may not always converge).20

Each one of the six solvers takes into account all of the constituents that explicitly
appear in Eq. (1), except for S2− whose concentration is negligible even at high pH
values. mod phsolvers logging.F90 is a special version of mod phsolvers.F90
that includes extra bookkeeping regarding the number of iterations required for
convergence, the numbers of bisection iterations due to limiting, the initial values25
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adopted, the initial bracketing values (if relevant), the intermediate iterates, etc.
mod phsolvers logging.F90 does not include solve at fast though. For more
technical details, please refer to the manual that goes with the source codes.

The modules mod acb solvers and mod acbw solvers provide simpler and more
streamlined solvers, based upon the AlkCB and AlkCBW approximations, respectively.5

6.2 Test case definitions

The pHSWS scale was adopted for all of the calculations below. With each method, iter-
ations were stopped once the relative change of an iterate compared to its predecessor
felt below 10−8; the maximum number of iterations was set to 50. For all of the three
cases, we adopt a temperature of 275.15 K, a salinity of 35 and an applied pressure of10

0 bar. Additional results for a temperature of 298.15 K or a pressure of 300 bar can be
found in the Supplement.

The convergence properties for each one of the pH solvers are explored for three
different (nested) subsets of the CT-AlkT space:

SW1 – for CT ranging between 1.85 mmolkg−1 and 2.45 mmolkg−1, and AlkT15

between 2.20 meqkg−1 and 2.50 meqkg−1, on a regular 600×300 cell cen-
tred grid;

SW2 – for CT ranging between 1.85 mmolkg−1 and 3.35 mmolkg−1, and AlkT

between 2.20 meqkg−1 and 3.50 meqkg−1, on a regular 1500×1300 cell
centred grid;320

SW3 – for CT ranging between 0 mmolkg−1 and 6 mmolkg−1, and AlkT be-
tween −1 meqkg−1 and 5 meqkg−1, on a regular 600×600 cell centred grid.

The other concentrations are set as follows: PT = 0.5µmolkg−1, SiT = 5µmolkg−1,
[NH4]T = 0µmolkg−1 and [H2S]T = 0µmolkg−1. With each test case, three different

3For the graphs shown below, a 150×130 cell centred grid was used.
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schemes are considered to start the iterations: (cub) starting values are derived
from the scheme designed for the cubic polynomial in Sect. 3.2.2; (pH8) a con-
stant starting value [H+]=10−8 molkg−1 is used, except for solve at ocmip , for
which the recommended “cold-start” brackets corresponding to pH= 6 and pH= 9
are used; (safe) the midpoint of the pH interval defined by the instrinsic brackets Hinf5

and Hsup (from Sect. 5.1) is used as a starting value, except for solve at ocmip ,
for which Hinf and Hsup are used as initial brackets. Timing information is based
upon driver at general.F90 , all other information (numbers of iterations, of di-
vergences, errors, . . . ) upon driver at logging.F90 .

SW1 covers the typical range of present-day seawater samples. Every solver should10

be able to determine the root of the equation without a single failure. SW2 covers the
expected range of sea-water samples under the S750 stabilisation scenario over the
next 50 000 yr (derived from simulation experiments with the coupled carbon cycle-
sediment model MBM-MEDUSA (Munhoven, 2007, 2009)). SW3 is of more theoretical
nature and is meant to analyse the performance of the solvers with extremely low15

alkalinity or CT values. It will nevertheless also provide important information about the
convergence domains of solve at icacfp and solve at bacastow , as we will see
below.

6.3 Results

We here only present results obtained with the solvers from mod phsolvers (for the20

timings) and mod phsolvers logging . To simplify the presentation, we leave out the
prefix “solve at ” when referring to the different solver functions below. The testing
platform had a Debian 6.0.6 operating system (32-bit kernel 2.6.32-5-686-bigmem) run-
ning on a 2.53 GHz Intel Core2Duo T9400 CPU; all of the source codes were compiled
with gfortran 4.4.5, without any optimisation flags set.25
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6.3.1 Comparison of the six solvers

Figure 1 shows the distributions of pH for test cases SW1, SW2 and SW3, as calculated
by the new algorithm with Newton–Raphson iterations. Also shown is the equation
residual for SW3 (which encompasses the two others). Residual values smaller than
10−21 molkg−1 in absolute value are shown as 10−21 molkg−1. The residual is at least5

five orders of magnitude smaller than the actual H+ concentrations, emphasizing that
convergence was significantly reached.

Execution times for the SW1, SW2 and SW3 test series are reported in Table 1. The
times for each of the three test series have been normalised to the execution time of
the general sec routine with cubic initialisation (shown in italics). general sec was10

the fastest of the routines that successfully passed the complete test series.
For test cases SW1 and SW2, Bacastow’s method is clearly the fastest. It is about

20 % faster than the general and general sec routines developed here, and twice
or two and a half times as fast as its closest relative icacfp . general sec is gener-
ally about 5–10 % faster than general . The results obtained with fast indicate that15

the overhead required by the safeguard bracketing requires about 5 to 10 % extra com-
puting time, if everything works fine. However, the comparison of the SW2-pH8 results
for general and fast shows that replacing unacceptable Newton–Raphson steps by
safe but inherently slower bisection steps may overall even lead to a gain of time in
more critical situations. Neither fast , nor bacastow , nor icacfp were able to com-20

plete test case SW3; ocmip was furthermore not able to complete the SW2-pH8 test,
because of invalid initial bracketing over parts of the domain. Convergence failures with
ocmip can be avoided if we use the intrinsic bracketing bounds obtained in Sect. 5.1,
as can be seen from the ‘safe’ initialisation procedure. However, with this safe initialisa-
tion procedure, the execution for ocmip exceed those of general sec with the cubic25

initialisation by a factor of 5.6–5.7 in test case SW1 and SW2, and by a factor of 3.7
for case SW3. As can be seen on Fig. 1, SW3 includes a large number of CT-AlkT
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combinations that lead to extreme pH values (either lower than 4 or higher than 10),
where the intrinsic bounds are comparatively restrictive.

In each test, and with every method used, the initialisation procedure developed
above for the cubic polynomial leads to 30–60 % shorter execution times than the con-
stant initialisation (“pH8”) which may even lead to divergence (e.g. ocmip ).5

The reasons for the strong performance loss of icacfp in SW1 become obvious
from Fig. 2. That figure shows the number of iterations required to trigger the stop-
ping criterion for the SW2 test. The SW1 domain is included at the lower left of the
SW2 domain: it ends at CT = 2.45mmolkg−1 and AlkT = 2.50meqkg−1. In that area,
general and bacastow require at most four iterations, ocmip generally six or seven,10

but icacfp often fifteen and more.

6.3.2 Shortcomings of ICAC methods

As we have seen, ICAC methods have divergence problems on the SW3 grid. These
problems are inherent to the method and can only be alleviated to a limited extent. It
should be noticed that the fixed-point equation H =Q(H) (see Eq. 10) has a solution,15

i.e. that Q(H) has a fixed-point, for any CT −AlkT pair, since the total alkalinity–pH
equation has a solution.

The divergence pattern of the ICAC methods can easily be explained from the deriva-
tive of the underlying function Q with respect to H , shown for SW3 on Fig. 3. The values
were calculated from the H+ concentrations shown on Fig. 1. The derivative values are20

negative over the whole domain and fixed-point iterations thus oscillate around the so-
lution (i.e. the fixed-point of Q). Fixed-point iterations can only converge to the fixed
point of Q where the derivative is strictly smaller than 1 in absolute value, i.e. is strictly
greater than −1 here. The thick white line indicates where the derivative of Q is equal to
−1. The white areas on the other graphs indicate where the methods did not converge.25

The white areas for icacfp clearly match the areas where the derivative of Q is lower
than −1. They are even somewhat larger.
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When the derivative of Q are just slightly greater than −1, iterations may become “op-
erationally divergent”: the pre-set maximum number of iterations is insufficient to meet
the stopping criterion as the generated suite converges too slowly there. Bacastow’s
method, on the other hand, has a slightly larger convergence domain than delimited by
the thick white line in the graph of the derivative. The fixed-point equation can indeed5

be solved by the secant method in some instances where straight fixed-point itera-
tions would produce slowly divergent iteration suites. As the derivative of Q is negative,
fixed-point iterations oscillate around the root, as long as they can be evaluated, i.e. as
long as the AlkC estimates obtained from AlkT with the H iterates range between 0 and
2CT. If they can be successfully calculated, the two first iterates used to initialize the10

secant iterations in Bacastow’s method thus bracket the root and we may expect that
the first application of the secant method provides an excellent estimate for the root,
even if the two first iterates would generate a fixed-point suite that slowly diverges. This
is especially obvious inside the white bulge on Fig. 3c at low CT values and AlkT values
greater than CT.15

6.3.3 Quality of the cubic equation based initialisation

As shown above, the initialisation scheme especially designed for the iterative solution
of the cubic Eq. (12) by the Newton–Raphson method is highly attractive even for more
complex approximations to total alkalinity than AlkCB. This is quantified on Fig. 4, ex-
emplified by SW2 results. The relative error of H0 determined as outlined in Sect. 3.2.220

on the actual H+ concentration (as calculated with general ) is less than 7 % over the
SW2 domain. In comparison, over that same domain, the approximation AlkC ' AlkT
and usage of Eq. (7) gives rise to errors that are about ten times as large.
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7 Conclusions

We have explored the mathematical properties of the total alkalinity–pH equation, i.e.
the equation that relates [H+] (or equivalently pH) to total alkalinity and the total con-
centrations of all the acid systems contributing to total alkalinity. We have demonstrated
that the rational function expression of that equation is strictly monotone. If water self-5

ionization is considered, the total alkalinity–pH equation has one and only one posi-
tive root, for any given value of total alkalinity, and for any given non negative values
for the total concentrations of the acid system components of total alkalinity. All other
roots of the equation are either negative or complex with non-zero imaginary parts. We
have shown that there are intrinsic upper and lower bounds for the positive root of the10

equation that only depend on information from the list of included acid systems. These
seemingly straightforward mathematical properties have apparently not been published
before and currently available solvers do not take advantage of them. They actually en-
abled us to design a universal and fail-safe algorithm to solve the total alkalinity–pH
equation. We propose two variants, one using the Newton–Raphson, the other the15

secant scheme.
The performances of the two algorithms (plus one simplified version without safe-

guarded iterations) were compared with some common existing ones: (1) the fixed-
point Iterative Carbonate Alkalinity Correction Method (ICAC), a classical method re-
cently made popular again by Follows et al. (2006); (2) the method of Bacastow (1981),20

which is a variant of the previous one using secant instead of fixed-point iterations and
(3) the OCMIP-2 standard protocol routines (Orr et al., 2000), re-implemented here.
Source code with a reference implementation of the six algorithms discussed in the
text is provided in the SOLVer Suite for Alkalinity-PH Equations (SOLVESAPHE) in the
Supplement for use under the GNU Lesser General Public Licence Version 3 (LGPLv3)25

license.
We have defined three test cases for a comparative analysis of the six methods:

one for the typical open-ocean concentrations of total dissolved inorganic carbon and
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total alkalinity of the present-day ocean; another one covering the expected future dis-
tributions of these concentrations under progressing ocean acidification and subse-
quent dissolution of deep-sea surface sedimentary carbonates; a third one covering
extremely low concentrations of dissolved inorganic carbon and total alkalinity, and
even negative values for total alkalinity. Different approaches for starting iterative root-5

finding methods have been tested as well for their efficiency.
The two new algorithms are the only ones that successfully complete all of the tests.

The same convergence security could be achieved with the OCMIP solver as well af-
ter a modification of its initialisation scheme, at the price of much longer execution
times though (typically by a factor of three to six). Bacastow’s method is the fastest10

of all the tested general methods overall in the common regions of convergence. The
two new algorithms are only 10–20 % slower than Bacastow’s method and more than
50 % faster than the next best performant ones. The secant variant of our algorithm is
about 5–10 % faster than the Newton–Raphson variant. We have developed an orig-
inal starting scheme for solving the cubic polynomial equation that is to be solved to15

determine pH from carbonate and borate alkalinity alone. That starting scheme can
easily be completed for usage with general total alkalinity–pH equation solvers and we
show here that it typically allows to save 30–60 % of calculation time compared to the
standard pH=8 initialisation.

The two proposed algorithms are furthermore extremely robust. As documented in20

the Supplement, the sample implementation has been successfully used with random
values (covering up to six orders of magnitude) for the total concentrations of the acid
system components to total alkalinity and of total alkalinity itself, with random pH start-
ing values between 1 and 14 and still ensured convergence in 100 % of the cases.

The two proposed new algorithms thus offer almost convergence security over an25

extremely wide range of total concentrations for the contributions of the various acid
systems to total alkalinity, at a marginal additional computational cost only.
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Appendix A

Alkalinity components are strictly decreasing with [H+]: demonstration

We are now going to show that

dAlkA

d[H+]
< 0,

for any given acid system HnA - Hn−1A− - . . . - An−, i.e. for constant [ΣA], at equilibrium.5

For notational convenience, we write

AlkA = [ΣA]
(
D1

D
−m

)
,

with

D =
n∑

j=0

Πj [H
+]n−j and D1=

n∑
j=0

jΠj [H
+]n−j .

Since Πj > 0 for any j ≥ 0, we know that D > 0 and D1 > 0. We may then write10

dAlkA

d[H+]
= [ΣA]

d
d[H+]

(
D1

D

)
=[ΣA]

D dD1
d[H+]−D1

dD
d[H+]

D2
.

It is straightforward to show that

dD
d[H+]

=
1

[H+]
(nD−D1) and

dD1

d[H+]
=

1
[H+]

(nD1 −D2),

where we have further defined

D2 =
n∑

j=0

j2Πj [H
+]n−j ,15
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which is positive, similarly to D and D1. We hence find that

dAlkA

d[H+]
= [ΣA]

D(nD1−D2)−D1(nD−D1)

[H+]D2
=−[ΣA]

DD2−D
2
1

[H+]D2
.

The result now follows from Lagrange’s identity: n∑
j=0

x2
j

 n∑
j=0

y2
j

−

 n∑
j=0

xjyj

2

=
1
2

n∑
j=0

n∑
i=0

(xiyj −xjyi )
2.

With5

xj =
√
Πj [H+]n−j

yj = j
√
Πj [H+]n−j ,

we have

n∑
j=0

x2
j = D,

n∑
j=0

y2
j = D2 and

n∑
j=0

xjyj = D1.10

To conclude, it is then sufficient to notice that

n∑
j=0

n∑
i=0

(xiyj −xjyi )
2 =

n∑
j=0

n∑
i=0

ΠiΠj (i − j )2[H+]2n−i−j

which is strictly positive if n > 0. Alternatively, the result also follows from the Cauchy-
Schwarz inequality in n+1 dimensions, noticing that the conditions for equality are not
met.15

Accordingly, AlkA([H+]) is strictly decreasing as a function of [H+].
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Supplementary material related to this article is available online at:
http://www.geosci-model-dev-discuss.net/6/2087/2013/
gmdd-6-2087-2013-supplement.zip.
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Table 1. Execution times for the SW1, SW2 and SW3 tests, each one with the three initiali-
sation types (see text). Crosses (×) indicate test series that were affected by divergences and
could not be considered for time measurements (notice one exception); dashes (–) indicate
that the experiment was not carried out. Within each one of the groups SW1, SW2 and SW3,
figures were normalized to the execution time of the respective “cub” run with general sec
and rounded to the nearest multiple of 0.05 (i.e. the order of the the largest standard deviation).
“cub” results for general sec are reported in italics as they have been implicitly set to exactly
1 by the normalization procedure and are not affected by the rounding procedure.

Routine SW1 SW2 SW3
cub pH8 safe cub pH8 safe cub pH8 safe

general 1.05 1.55 1.65 1.05 1.60 1.65 1.10 1.65 1.75
general sec 1.00 1.45 1.60 1.00 1.60 1.55 1.00 1.55 1.55
fast 0.95 1.50 1.70 1.00 1.65 1.90∗ × × ×
icacfp 2.35 2.90 – 1.75 2.10 – × × –
bacastow 0.90 1.15 – 0.85 1.10 – × × –
ocmip 1.85 3.15 5.70 1.75 × 5.60 × × 3.70

∗ Note: includes one divergent case on 1 950 000 calls.
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Fig. 1. pHSWS values obtained with the new universal algorithm (general ) for test cases (a)
SW1, (c) SW2 and (b) SW3 – please notice the extended colour scale. (d) Absolute value of
the equation residual at the adopted root value, derived with that same algorithm started with
the cubic-based initialisation to solve test case SW3. Applied convergence criterion: |Hn+1 −
Hn|/Hn < 10−8.
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Fig. 2. Number of iterations required by (a) general , (b) icacfp , (c) bacastow with secant
iterations on [H+] and (d) ocmip , each one using the cubic-based initialisation procedure to
solve test case SW2. Applied convergence criterion: |Hn+1 −Hn|/Hn < 10−8.
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Fig. 3. (a) Derivative with respect to H of the function underlying the ICAC methods, i.e. of the
function Q given by Eqs. (8) and (9) that defines the recurrence Hn+1 =Q(AlkC(AlkT,Hn),CT).
The white line indicates where the derivative is equal to −1; in the stippled area, the derivative
is strictly lower than −1. Also shown are the numbers of iterations required to meet the conver-
gence criterion for (b) general , (c) icacfp and (d) bacastow with secant iterations on [H+].
White areas indicate no convergence or an excessive number of iterations (n > 50).
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Fig. 4. (a) Relative deviation (in %) of the solution of the quadratic Eq. (7), calculated by setting
AlkC = AlkT, from the actual root of the complete system; (b) idem for the cubic polynomial
based initial [H+], calculated by setting AlkCB = AlkT. Please notice the strongly different colour
scales (underlying data come from test case SW2).
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